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Abstract: The minisatellite locus,BbMin1, was isolated from a partialBeauveria bassianagenomic library that con-
sisted of poly(GA) flanked inserts. Polymerase chain reaction (PCR) of theBbMin1 repeat demonstrated allele size
variation among 95B. bassianaisolates. Amplification was also observed from single isolates ofBeauveria amorpha,
Beauveria brongniartii, andBeauveria caledonica. Eight alleles were identified at the haploid locus, where repeat num-
ber fluctuated between one and fourteen. AMOVA andθ (Fst) indicated that fixation of repeat number has not occurred
within pathogenic ecotypes or geographically isolated samples ofB. bassiana. Selective neutrality of allele size, the
rate of BbMin1 mutation, and the age of the species may contribute to host and geographic independence of the
marker. Presence of alleles with a large number of repeat units may be attributed to the rare occurrence of somatic re-
combination or DNA replication error. The molecular genetic marker was useful for the identification of genetic types
of B. bassianaand related species.
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Résumé: Le minisatelliteBbMin1 a été isolé d’une banque génomique partielle duBeauveria bassianacomposée
d’inserts contenant une suite poly(GA). L’amplification PCR (réaction de polymérisation en chaîne) du locusBbMin1 a
révélé de la variation quant à la taille des allèles au sein d’une collection de 95 isolats duB. bassiana. L’amplification
a également été obtenue chez un isolat unique duBeauveria amorpha, du Beauveria brogniartiiet du Beauveria
caledonica. Huit allèles ont été identifiés pour le locus haploïde et le monomère était répété entre une et huit fois. Des
analyses AMOVA etθ (Fst) ont montré que la fixation du nombre de répétitions ne s’est pas produite au sein des éco-
types pathogènes ou au sein d’isolats duB. bassianaqui montrent un isolement géographique. La neutralité de la taille
des allèles et du taux de mutation deBbMin1 sur le plan de la sélection ainsi que l’âge de l’espèce pourraient contri-
buer à l’absence de corrélation entre ce marqueur et l’hôte ou l’origine géographique. La présence d’allèles présentant
un grand nombre de répétitions pourrait être attribuable à de rares événements de recombinaison somatique ou à des
erreurs de réplication. Ce marqueur génétique s’est avéré utile pour l’identification de certains génotypes duB. bas-
siana et de d’autres espèces.

Mots clés: Beauveria bassiana, identification de souches, variation des minisatellites.

[Traduit par la Rédaction] Coates et al. 132

Introduction

The haploid imperfect filamentous fungusBeauveria
bassiana(Bals.) Vuill. (Ascomycota: Hypocreales) has both
endophytic and entomopathogenic characteristics. Agricul-
tural biocontrol ofOstrinina nubilalis, (Hübner) (Lepidoptera:

Crambidae) (Bing and Lewis 1992; Bing and Lewis 1991)
and Diabrotica spp. (Coleoptera:Chrysomelidae) (Krueger
and Roberts 1997; Mulock and Chandler 2000) has been
documented. Ambiguous results have been provided in
regard to host specialization and geographic distribution of
genetic variants ofBeauveriaspp. Specifically, Viaud et al.
(1996) and Neuveglise et al. (1994) indicated that molecular
variation amongBeauveria isolates was related to insect
host range using RFLP and internal transcribed spacer re-
gion analysis, respectively. Similar correlation was found
based on isozyme marker data (Poprawski et al. 1989;
Mugnai et al. 1989). PCR–RAPD (Williams et al. 1990;
Welch and McClelland 1990) genotyping ofB. bassianain-
dicated that isolates from the sugar cane borerDiatraea
saccharalisshared≥80% of 276 bands (Berretta et al. 1998).
Regional variation in PCR–RAPD marker data ofBeauveria
brongniartii isolates from the European cockchafer,
Melolontha spp., in France indicated that a high degree of
similarity was present (Cravanzola et al. 1997; Piatti et al.
1998). Cravanzola et al. (1997) further indicated that differ-
ences between most strains represent minor variations of a
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common genotype, yet it was stated that the similarities in
genotype failed to show a correlation between genotype and
pathogenicity (Cravanzola et al. 1997; Piatti et al. 1998).
The high degree of relatedness amongBeauveria isolates
was suggested to result from clonal propagation or recent
speciation within the genus (St. Leger et al. 1992; Bidochka
et al. 1994; Viaud et al. 1996).

In contrast, Urtz and Rice (1997) used PCR–RAPD analy-
sis to distinguish two separate genetic groups ofB. bassiana
that infected the rice water weevil,Lissorhoptrus
oryzophilus, in Louisiana that were 45% divergent at 172
polymorphic bands. Urtz and Rice (1997) also suggested
that the two groups represented different populations that ex-
isted sympatrically. Based on PCR–RAPD and RFLP, Mau-
rer et al. (1997) showed thatB. bassianaisolates derived
from coleopteran insect species showed a high level of ge-
netic differentiation. Also, no evidence for host-range clus-
tering was shown for the entomopathogenic fungi
Metarhizium anisopliae and Metarhizium flavoviride
(Bidochka et al. 1994) when PCR–RAPD bands were ana-
lyzed. More recently, microsatellite data fromAspergillus
flavus reported a lack of significant genetic similarity of in-
fective types (St. Leger et al. 2000). Geographic component
of isolate variation was also found not to contribute to iso-
late differentiation. In several instancesB. bassianaisolates
from the same region, collected from the same insect spe-
cies, were genetically dissimilar (Berretta et al. 1998; Urtz
and Rice 1997), or similar genetic types were described
from widely separated geographic locations (St. Leger et al.
1992; Bidochka et al. 1994; Poprawski et al. 1989).

Microsatellite loci are described as having two to six
tandemly repeated nucleotide units, whereas minisatellites
are composed of a variety of larger repeat units (Tautz
1993). Polymorphic minisatellite alleles could arise via un-
equal crossover (Jeffreys et al. 1985; Jeffreys et al. 1988),
gene conversion (Bishop et al. 2000; Buard and Vergnaud
1994; Jeffreys et al. 1994), or strand slippage (Levinson and
Gutman 1987). Most minisatellites have been mapped to
telomeric and centromeric regions (Royle et al. 1988) and
were proposed to constitute recombination hot spots
(Chakravarti et al. 1986; Steinmetz et al. 1987) or fragile
sites (Oliva et al. 2000).

Minisatellites are destabilized through strand slippage
(Levinson and Guttman 1987) and have been observed from
DNA replication component mutants in yeast. Deletion of the
Saccharomyces cerevisiae(Ascomycota: Saccharomycetales)
rad27 nuclease involved in Okazaki fragment maturation re-
sulted in an 11-fold increase in the rate of minisatellite mu-
tation (Koskoska et al. 1998). A temperature-sensitive
mutantpol3-t allele from yeast (Tran et al. 1995; Tran et al.
1996) increased the rate of minisatellite instability 13 fold
through an altered catalytic subunit of DNA polymerase
(Kokoska et al. 1998). Mutation of the yeast DNA replica-
tion processivity factor, proliferating cell nuclear antigen
(PCNA), encoded by thePOL30 gene was characterized to
have defects in DNA replication. Specifically, the cold-
sensitivepol30-52mutation caused a six-fold increase in ob-
served minisatellite mutations (Kokoska et al. 1999).

Experiments with yeast estimated the rate of GT–CA
microsatellite mutation at 6.7 × 10–6, and a 20-nucleotide re-

peat unit minisatellite at 7.4 × 10–5 (Ayres Sia et al. 1997).
Microsatellite repeat unit changes were shown to arise as
neutral mutations in accordance with the hypothesis of ran-
dom drift (Jeffreys et al. 1988). Multiple allelic types at each
locus have been used in the estimation of fungal genetic di-
versity (Bart-Delabesse et al. 1998; Bart-Delabesse et al.
1999; St. Leger et al. 2000). Minisatellite motifs discovered
within fungi have included a 12-bp repeat from the unicellular
brewing yeastSaccharomyces carlsbergensis(Ascomycota:
Saccharomycetales) (Anderson and Nilsson-Tillgren 1997),
that was found within a homolog of theS. cerevisiaeopen
reading frame (ORF) YCL010c. Two subtelomeric
minisatellites, STR-B (Louis et al. 1994) and the Y element
(Horowitz and Haber 1984), were found to consist of 36-
and 56-bp repeat elements, respectively. A minisatellite from
the filamentous ascomycete Podospora anserina
(Ascomycota: Sordariales) has been characterized (Hamann
and Osiewacz 1998). TheP. anserina locus PaMin1 con-
sisted of a GT-rich, 16-bp repeat element and intraspecies
variation defined six allelic types. The second known
minisatellite from a filamentous ascomycete fungus,MSB1,
was discovered in theBotrytis cinerea (Ascomycete:
Leotiale, Sclerotiniaceae) ATP-synthase intron and con-
tained seven allelic types that varied in the number of AT-
rich, 37-bp repeat motifs (Giraud et al. 1998).

We reportB. bassianaisolates that were differentiated on
the basis of allelic types present at the newly described
minisatellite locus,BbMin1, that varied in the number of 16
nucleotide repeat units. The minisatellite was only the third
such motif to be isolated from a filamentous ascomycete
fungus. Interspecific amplification of the locus from four re-
lated species,Beauveria amorpha, Beauveria brongniartii,
Beauveria caledonica, and Beauveria vermiconiawas de-
sired in order for evolutionary conservation of the locus to
be determined. We wished to useBbMin1 allele variation to
compare isolates in respect to the geography and insect-host
preference displayed by the entomopathogenic fungusB.
bassiana, which may resolve ambiguity between previous
studies.

Materials and methods

Beauveria isolates and sample preparation
Sixty-six B. bassiana(Bb) isolates and one isolate each of

B. amorpha(Ba), B. brongniartii (Bt), B. caledonica(Bc),
andB. vermiconia(Bv) were obtained from the U.S. Depart-
ment of Agriculture–Agricultural Research Service (USDA–
ARS), Plant Protection Research Unit, U.S. Plant, Soil, and
Nutrition Laboratory, Ithaca, N.Y. (Humber 1992). Bb6715
was originally isolated from an adult western corn
rootworm, Diabrotica virgifera subsp. virgifera, and re-
ceived from Barbra Mulock, USDA–ARS, Brookings, S.D.
Bb726 was isolated from a grasshopper, by Stephan
Jaronski, Myotech Corp., Butte, Mont. Field isolates EL03
and EL12–EL19 were derived from European corn borer lar-
vae,Ostrinia nubilalis (Lepidoptera: Crambidae) and main-
tained at the USDA–ARS Corn Insects and Crop Genetics
Research Unit (CICGRU), Ames, Iowa. Isolates NR1–NR5
were from northern corn rootworm,D. barberi (Coleoptera:
Chrysomelidae), adults and WR1–WR15 were fromD.
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virgifera subsp. virgifera (Coleoptera: Chrysomelidae)
adults collected from two fields in Jackson Co., Iowa, ap-
proximately 2 km apart. Bb1022 was isolated by the USDA–
ARS CICGRU from a corn plant near Champaign, Ill. Prop-
agation was on Sabordauds dextrose agar (Difco, Becton
Dickenson Co., Sparks, Md.) incubated at 30°C. DNA ex-
tractions were performed as described by Neuveglise et al.
(1997). Resultant nucleic acid pellets were diluted with ster-
ile deionized water and stored at –20°C before use.

Satellite DNA isolation
Degenerate (GA)8RY primers were used to amplify total

genomic DNA from isolate Bb1022 in a touchdown PCR
(Don et al. 1991). Products were separated on a 0.1 × 20 cm,
6% polyacrylamide, 29:1 (acrylamide:bisacrylamide), 1×
Tris-borate–EDTA (TBE) gel with 20µL PCR product per
lane. Allele fragments were visualized by ethidium bromide
staining, and image capture took place on a Fotodyne FOTO –
Analyst Investigator PC-FOTO – Eclipse Electronic Docu-
mentation System (Fotodyne, Hartland, Wis.). PCR product
ligation into the pGEM-T Easy cloning vector (Promega)
took place according to manufacturers instructions.
Eschericia coli SURE® (Stratagene, La Jolla, Calif.) was
transformed by electroporation on a MicroPulsar apparatus
(BioRad, Hercules, Calif.). Clone selection and blue–white
screening were performed (Maniatis et al. 1989). Eleven
clones with unique insert sizes were propagated in 25 mL
terrific broth (12 g tryptone, 24 g yeast extract, 4 mL glyc-
erol, 2.31 g KH2PO4, and 12.54 g K2HPO4) containing
ampicillin (Maniatis et al. 1989). Plasmid DNA was isolated
with the QIAprep spin miniprep kit (Qiagen, Valencia, Ca-
lif.) according to manufacturer’s directions. Template was
submitted to the DNA Sequencing and Synthesis Facility at
Iowa State University in the concentration of 50 ng/µL. Indi-
vidual plasmids were sequenced in separate reactions with
primers T7 and SP6. Each insert DNA sequence was recon-
structed from T7 and SP6 reaction electropherogram data
using Contig Express (Informax, San Francisco, Calif.).

PCR amplification and screening
Primers BbMin1-F (5′-CATGTTGGTGACGAAGTGAGC-

3′), and BbMin1-R (5′-GAGAGAGAGCCCTCGT CTGATAT-
3′) were designed based on insert DNA sequence data from
clone pGEM-BbMS-07, and using the Primer3 website
(Rozen and Skaletsky 1998). Both oligonucleotides were

synthesized at Integrated DNA Technologies (Coralville,
Iowa). PCR amplification took place using 6 pmol of each
primer, 20–25 ng of sample DNA, 0.425 UTaq polymerase
(Promega), 1.25µL of 10× thermal polymerase buffer
(Promega), 2.5 mM MgCl2, and 150µM dNTPs in a 12.5-µL
volume. Thermocycler reaction took place at 94°C for
3 min, followed by 40 cycles of 94°C for 30 s, 52°C for
30 s, and 72°C for 30 s. PCR products were separated at 150
V for 5 h on a 20 × 0.1 cm, 6%polyacrylamide, 19:1
(acrylamide:bisacrylamide), 1× TBE gel with a 25-bp ladder
(Promega) for size comparison. Bands were visualized by
ethidium bromide staining, and image capture took place on
a Fotodyne FOTO – Analyst Investigator PC-FOTO –
Eclipse Electronic Documentation System (Fotodyne,
Hartland, Wis.). DNA fragment size estimations were made
from the digital images using Gel-Pro Analyzer software
(Media Cybernetics, Silver Spring, Md.).

Estimated repeat number of each allele size was con-
firmed by sequencingBbMin1 PCR products from isolates
Bb3543, Bb730, Bb1022, Bb938, and Bb201. PCRs de-
scribed previously were scaled up to 50µL, and were puri-
fied using the QIAprep spin miniprep kit (Qiagen, Valencia,
Calif.) according to manufacturer directions. Owing to the
difficulty in sequencing small PCR products,BbMin1 alleles
from isolates Bb3167 (87 bp), Bb1155 (103 bp), and Bb726
(119 bp) were cloned into pGEM-T easy cloning vectors
(Promega). Alleles inserted into each plasmid clone were
identified using colony PCR with primers BbMin1-F and
BbMin1-R, followed by electrophoresis as indicated above.
Plasmid DNA was prepared for sequencing as described pre-
viously.

Data analysis
Beauveria bassianapopulation dynamics were separately

analyzed on the basis of pathogenic capacity and geographic
distribution. Four ecotypes (subpopulations) were defined on
the basis of which insect order isolates were derived
(Humber 1992). Each ecotype consisted of two groups that
further defined isolate phenotype; Ecotype 1 consisted of
two groups,Ostrinia nubilalis and other Lepidopteran in-
sects; Ecotype 2 consisted of groupsDiabrotica spp. and
other Coleoptera; Ecotype 3 contained the groups Hemiptera
or Homoptera and Hymenoptera; and Ecotype 4 contained
groups Orthoptera and all other insects. Five geographic
subpopulations were defined from Eastern Asia and Austra-
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Fig. 1. Insert DNA sequence 483-bp from clone pGEM-BbMSGA-07 (GenBank accession No. AF387913). Alternate 16-bp
5′-GAGAATATCAGACGGG-3′ repeat units and four GT repeats are underlined, and primer binding sites are underscored by arrow-
heads, indicating direction.
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lia (A), Eurasia (E), Africa (F), North America (N), and
South America (S). All calculations were performed using
Arlequin (Schnieder et al. 1997). Analysis of molecular vari-
ance (AMOVA) andθ (Fst) were determined by methods

described by Excoffier et al. (1992), Weir and Cockerham
(1983), and Weir (1996).

Results

A 483-bp plasmid-insert DNA sequence from clone
pGEM-BbMS-07 contained a 16-bp minisatellite motif with
seven repeats of 5′-GAGAATATCAGACGGG-3′ (Fig. 1;
GenBank accession No. AF387913), and was subsequently
namedB. bassianaminisatellite 1 (BbMin1). The pGEM-
BbMS-07 insert sequence that containedBbMin1 also had a
short internal (GT)4 microsatellite and, by nature of its con-
struction, had two flanking (GA)8 microsatellites. Initial
PCR amplification of the locusBbMin1 with primers
BbMin1-F and BbMin1-R took place from isolate Bb1022
DNA, and resulted in a 199-bp product as predicted from the
cloned sequence. Ninety-fiveB. bassianaisolates were simi-
larly PCR amplified and showed thatBbMin1 was mono-
allelic in each haploid isolate and size variable among iso-
lates, with eight alleles from 87 to 295 bp in length (Table1;
Fig. 2). The 95 isolates were divided into four ecotypes,
based on insect-host range, and five groups, according to
geographic location of original isolation (Table 1). The fre-
quency of each allele was calculated for the entire popula-
tion (Table 1). DNA sequence data from isolates Bb3543,
Bb730, Bb1022, Bb938, Bb201, Bb1155, Bb726, and
Bb3167 (data not shown), representing all observedBbMin1
allele size variants, identified full repeat units as the basis
for each allelic size variant. The locus was also amplified
from related speciesB. amorpha, B. brongniartii, and B.
caledonica (Table 1), but amplification from a singleB.
vermiconiasample failed despite repeated optimization at-
tempts. Population structure and relation among definedB.
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R Size (bp) Frequency Ecotype 1 Ecotype 2 Ecotype 3 Ecotype 4

14 295 0.01 [3543] = N
10 231 0.01 [730] = S
08 199 0.253 [501, 502, 533] = A

[1149, 1314] = E
[1022, 1038, 3113, EL03,
EL13-EL15, 2570] = N
[959] = S

[1060, 1454, 2520] = S
[3037, NR5] = N

[654, 708] = A
[2869] = E

[3216] = N
[Bt958] = A

6 167 0.07 [2737] = A [758, 809, 928, 937, 938] = S [560] = A
[1486] = S

04 135 0.347 [843] = E [1121, EL12,
EL16-EL19] = N

[201, 2330, 2579, 3111,
NR01-NR04,
WR01-WR15] = N

[320] = S [356] = A
[796] = S

03 119 0.05 [151] = E [150] = E
[1155] = F

[477] = S [1959] = S

02 103 0.221 [652] = A
[1113] = E
[1001, 2297] = S

[721, 783, 2515] = S
[318, 3369, 6715] = N
[2685] = F

[300] = A
[338]*
[886] = E
[3086] = N
[737, 957, 1960] = S

[726, 1151] = N
[Ba2251] = S

01 87 0.03 [2629] = S [3167] = E [153, Bc2567] = E

Note: Ecotype 1, Lepidoptera; Ecotype 2, Coleoptera; Ecotype 3, Hemiptera or Homoptera and Hymenoptera; and Ecotype 4, Acrididae and other
insects. Within each ecotype, isolates appear in square brackets to indicate geographic location: A, Eastern Asia and Australia; E, Eurasia; F, Africa; N,
North America; S, South America; and asterisk, unknown. R indicates repeat number, and size is given in base pairs. Isolates ofB. amorpha(Ba), B.
brongniartii (Bt), andB. caledonica(Bc) are underlined.

Table 1. The distributionBbMin1 minisatellite alleles among 95Beauveria bassianadivided into four ecotypes.

Fig. 2. Polyacrylamide gel electrophoresis separation of eight
observed alleles at theBbMin1 minisatellite locus, performed on 20 ×
0.1 cm, 6% polyacrylamide (19:1, acrylamide:bisacrylamide), 1×
TBE gels at 150V for 5 h. Alleles with 14 (lane 1), 10 (lane 2),
8 (lane 3), 6 (lane 4), 4 (lane 5), 3 (lane 6), 2 (lane 7), and 1
(lane 8) repeat units are shown. L = Promega 100-bp ladder.
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bassianaecotypes and geographic divisions were evaluated
by AMOVA and fixation indices (Table 2).

Discussion

Allele size differences at theB. bassianaminisatellite lo-
cusBbMin1 have been characterized and used for identifica-
tion of isolates. The locus is the third such repeat element
reported from a filamentous fungus, where the first was a
GT-rich 16-bp repeat at thePaMin1 locus of the ascomycete
Podospora anserina(Hamann and Osiewacz 1998). Like
PaMin1, BbMin1 was isolated from a genomic clone that
contained a microsatellite. Linkage between microsatellite
and minisatellite elements also was reported from human
genomic clones (Giraudeau et al. 1999). EachBbMin1 repeat
unit (5′-GAGAATATCAGACGGG-3′) has 50% G/C-content
and a reduced core region (underlined) that is similar to a
majority of G-rich minisatellites (Dover 1989). Electropho-
resis of BbMin1 PCR products indicated that allelic poly-
morphism existed among isolates ofB. bassiana, with eight
alleles that contained 1–14 repeat units. Based onBbMin1
allele differences, a fixation index (Fst; θ) of 0.08204 sug-
gested that little genetic divergence had occurred between
pathogenic ecotypes. AMOVA indicated that 91.8% ofB.
bassianapopulation variation was present between individu-
als within each pathogenic ecotype and 0.4% occurred be-
tween ecotypes. Similarly, AMOVA results predicted
70.83% of population variation was within groups separated
by geographic location, but greater genetic separation was
present compared with pathogenic ecotypes (Fst; θ =
0.29175). Therefore, we concluded that little statistical evi-
dence existed to correlateBbMin1 allele size with either in-
sect host preference or geographic location.

The number of alleles maintained among individuals in a
population depends upon the rate of generation by mutation
and loss by genetic drift. Rate of minisatellite allele loss is
assumed to be constant, and polymorphism is dependent
upon the rate of allele generation (Jarman and Wells 1989).
The distribution of minisatellite alleles is skewed favoring
those of decreased repeat number, and implies greater stabil-

ity with decreased allele length (Wong et al. 1986). Hamann
and Osiewacz (1998) suggested that unequal crossover of
complete PaMin1 repeat units during nuclear division
(Jarman and Wells 1989; Tautz and Schlotterer 1994) was
responsible for minisatellite generation inP. anserina. Rar-
ity of somatic recombination (Buard et al. 2000) would im-
ply that generation of new minisatellite alleles has been an
infrequent event. Range ofBbMin1 allele sizes amongB.
bassianaisolates and presence of alleles with large repeat
number (isolates Bb3543 and Bb710) may suggest an alter-
nate mechanism has functioned inBbMin1 repeat expansion.
Giraud et al. (1998) proposed strand slippage (Levinson and
Guttman 1987) as the mechanism by which minisatellite mu-
tation occurred in the ascomyceteB. cinerea. Mutation inS.
cerevisiae DNA replication and repair elements RAD27
(Koskoska et al. 1998), POL3 (Koskoska et al. 1998), and
POL30 (Kokoska et al. 1999) have also been implicated in
minisatellite allele generation. The mechanism by which re-
peat number has expanded and contracted atBbMin1 is yet
to be determined, but may have involved one or all pro-
cesses of somatic recombination, strand slippage, or DNA
replication and repair errors.

In total, 62 of 95B. bassianaisolates showedBbMin1 al-
leles with 1–4 repeat units, and 31 of 95 isolates showed al-
leles with 6 or 8 repeat units. The largest allele sizes
contained repeat unit numbers of 10 and 14, and each were
present in 1 of 95 isolates. Population variation at the
PaMin1 locus demonstrated thatP. anserinaisolates differed
by up to four repeat units (Hamann and Osiewacz 1998), and
seven alleles at theMSB1locus ofB. cinereavaried between
5 and 11 repeat units (Giraud et al. 1998). The frequency of
BbMin1 alleles with increased repeat number could be eval-
uated in two ways. First, the polymorphic state ofBbMin1
amongB. bassianaisolates may be explained if a relatively
high rate of new minisatellite allele generation is assumed.
Second, the originalBbMin1 repeat unit may have under-
gone duplication early in evolutionary history and the rate of
new BbMin1 allele generation may have been low owing to
the lack of a meiotic process in theB. bassianagenome.
Therefore, the presence of multiple allelic forms would be
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Insect host range Geographic origin

df
Sum of
squares

Variance
component % variation df

Sum of
squares

Variance
component % variation

Among groups 3 55.287 0.55285Va 7.81 4 5.916 0.04659Va 11.37
Among ecotypes

within groups
4 26.994 0.02802Vb 0.40 12 7.644 0.07297Vb 17.8

Within ecotype 86 558.92 6.49909Vc 91.8 77 22.641 0.29027Vc 70.83
Total 93 641.202 7.07995 100 93 36.200 0.40983 100

Fixation Indices 95% Confidence intervals Fixation Indices 95% Confidence intervals

Fsc (FIS) 0.00429 0.98143 + –0.00414 Fsc 0.20090 0.81723 + –0.00232

Fst 0.08204 0.08309 + –0.00899 Fst 0.29175 0.15284 + –0.01952

Fct (FIT) 0.07809 0.21896 + –0.01215 Fct 0.11369 0.18084 + –0.01307

Note: Ecotype 1 consisted of two groups,Ostrinia nubilalis and other lepidopteran insects; Ecotype 2, ofDiabrotica spp. and other Coleoptera; Ecotype
3, of Hemiptera or Homoptera and Hymenoptera; and Ecotype 4 contained Acrididae and all other insects; df, degrees of freedom.

Table 2. AMOVA table comparingB. bassianafrom eight groups within four ecotypes that define the insect order from which isolates
were derived.
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attributable to time since original repeat unit duplication.
The second hypothesis may be supported by proposed mech-
anisms of mutation at other ascomycete minisatellite loci
(Hamann and Osiewacz 1998; Giraud et al. 1998) and multi-
ple repeats characterized from relatedBeauveriaspecies (see
below).

The BbMin1 minisatellite locus was PCR amplified from
the Beauveria species B. amorpha, B. bassiana, B.
brongniartii, andB. caledonica.Results indicated that flank-
ing DNA sequence and the repeat unit have been
evolutionarily conserved. Tandem 16-bp repeat units were
characterized from singleB. amorphaand B. brongniartii
isolates, whereas aB. caledonicaisolate retained a single
copy of the repeat. Presence of greater than one repeat unit
in the genome of threeBeauveriaspecies suggested that re-
peat unit duplication occurred before speciation. Loci with
variable numbers of tandem repeat units sometimes have
gone undetected among close taxonomic relatives (Angers
and Bernatchez 1997; Taylor et al. 1999) and failed amplifi-
cation of BbMin1 from B. vermiconiaisolate Bv2922 was
another example.Beauveria vermiconiawas identified as a
primitive species because of a lack of an entomopathogenic
phenotype (Mugnai et al. 1989). During time since common
ancestry with otherBeauveriaspecies, point mutations at the
BbMin1-F or BbMin1-R primer binding sites ofB.
vermiconiamay have occurred.

Previous data indicated thatB. bassianaisolates were
similar among those obtained from the same host insect or
same geographic region (Magnai et al. 1989; Poprawski et
al. 1989; Neuveglise et al. 1994; Cravanzola et al. 1997;
Berretta et al. 1998; Piatti et al. 1998). Berretta et al. (1998)
suggested that a shared genetic character was associated
with isolates that were most virulent towardD. saccharalis
larvae. Berretta et al. (1998) also indicated that similar
PCR–RAPD patterns among isolates of Argentina and Brazil
provided evidence for clonal reproduction (St. Leger et al.
1992). Results fromB. brongniartii rRNA ITS region PCR–
RFLP assays indicated isolates from the insectHoplochelus
marginalis were genetically identical regardless of their
point of origin (Neuveglise et al. 1994), which was inter-
preted to suggest linkage between genotype and pathogenic
phenotype.

Few minisatellite or microsatellite studies have been con-
ducted on pathogenic fungi. An investigation ofAspergillus
flavus reported that no significant genetic similarity was
present among infective types (St. Leger et al. 2000). We
suggested that the mutation rate ofBbMin1was low, and im-
plicated the time since original repeat duplication as the ba-
sis for high allelic variability. We further hypothesize that
the independent distribution of theBbMin1 allele among
pathogenic types and geographically distant isolates ofB.
bassiana(Table 2) is because of neutral mutation and subse-
quent random genetic drift (Jeffreys et al. 1988). We identi-
fied three subsets of isolates that occupied common
ecological niches and were likely to share a recent common
ancestry; those isolated fromO. nubilalis larvae (i) near
Ames, Iowa; (ii ) in China; and (iii ) those fromDiabrotica
spp. adults from North America. EightB. bassianaisolates
from O. nubilalis larvae from Iowa were collected from an
area 15 km2 and had twoBbMin1 alleles that differed by

four repeat units (four mutation steps) (Table 1). Four
isolates that infectedO. nubilalis in China had two separate
alleles that were separated by a difference of five repeat
units. Twenty-three isolates collected from closely related
members of the insect genusDiabrotica in North America
possessed three differentBbMin1 alleles separated by as
many as five repeats. Allelic differentiation between isolates
that share similar ecological niches may indicate thatB.
bassianais more genetically heterogeneous that previously
reported (Cravanzola et al. 1997; Berretta et al. 1998; Piatti
et al. 1998), and could support the existence of multiple
sympatric lineages (Urtz and Rice 1997).

The locus BbMin1 contained the first minisatellite de-
scribed in the genusBeauveria. The molecular genetic
marker was used for identification of isolates fromB.
bassianaand related speciesB. amorpha, B. brongniartii,
and B. caledonica. AMOVA and fixation indices suggested
no relation betweenBbMin1 allelic component and insect-
host preference or geographic origin. Increased rate of muta-
tion at the minisatellite locusBbMin1 may account for the
dissimilarity of alleles among isolates that occupy the same
ecological niche and geographical location or those that
share a recent common ancestry. Allelic variation at the
BbMin1 locus suggested that it is a neutral genetic marker.
Additional satellite DNA markers are being developed to
continue investigation of satellite region mutation in
ascomycete fungi.
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